Design of external linear isentropic compression surfaces

This method works by using a Prandtl-Meyer expansion fan solution in reverse.

The correct shape for the duct is same as the flow expansion streamline around a sharp corner, the angle of which gives the correct input and output Mach numbers.

The method generates both polar (ϕ , r) and Cartesian (x, y) coordinates for the duct shape.

The variable inputs to the method are the duct height r_0 and the ratio of specific heats γ .

The algorithm runs through all the Mach numbers starting at exit M_0 and ending at the free stream M_{∞} , generating the coordinates at each one – the more coordinates you generate the more detail you have to draw your duct shape.

Here is the procedure (angles are in degrees):

- 1. Set r_0 (design decision) and γ (fluid conditions usually 1.4)
- 2. Calculate the following constant for use in the equations:

$$K = \sqrt{\frac{(\gamma - 1)}{(\gamma + 1)}}$$

For γ = 1.4, this is 0.406

- 3. You need to do the next steps for each Mach number M, between M_0 and M_{∞} (the more steps you use the more points you'll have to draw the shape):
- 4. Calculate ϕ :

$$\phi = \frac{1}{K} tan^{-1} K \sqrt{M^2 - 1}$$

5. Calculate r:

$$r = \left(\frac{1}{(\cos{(K\phi)})^6}\right) r_0$$

- 6. You now have the polar coordinates (r, ϕ)
- 7. For each Mach number M, calculate the Mach angle μ :

$$\mu = \sin^{-1}\frac{1}{M}$$

8. You can now calculate the flow angle v at that point:

$$\nu = \phi + \mu - 90^{\circ}$$

9. Finally calculate x and y:

$$x = rcos(\mu - \nu)$$
$$y = rsin(\mu - \nu)$$

10. You now have the (x, y) coordinates.

Here is an example for you to check your calculations:

INPUTS	
Mach No =	1.3
Gamma =	1.4
r ₀ =	1

OUTPUTS		
k =	0.40824829	
φ =	45.88546188	Polar coords
r =	1.386195875	Polar coords
μ =	50.28490524	
ν =	6.170367117	
x =	0.995219533	Rect coords
y =	0.964923357	Rect coords

References:

J. Seddon, E. L. Goldsmith, Intake Aerodynamics, AIAA. 1999 (2nd ed) – Note there is a missing equation in this reference, and it uses the next reference as a source (I don't think the authors have actually done the calculation).

J. F. Connors, R. G. Meyer, Design Criteria for Axisymmetric and Two-Dimensional Supersonic Inlets and Exits, NACA, Technical note 3589, 1956. (this is available on-line).